

2020-2021 "Orz Panda" Cup Programming Contest Closing Ceremony

Programming Contest Training Base

XIDIAN UNIVERSITY

Nov. 27, 2020

Part I Editorial

- ► Teams passed/tried: 16/17 (32 tries)
- ► We want:

$$\max_{1 \le i \le j \le n} \left(\sum_{i \le k \le j} w_k \right) \left(\min_{i \le k \le j} h_k \right)$$

- ► Teams passed/tried: 16/17 (32 tries)
- We want:

$$\max_{1 \le i \le j \le n} \left(\sum_{i \le k \le j} w_k \right) \left(\min_{i \le k \le j} h_k \right)$$

- \blacktriangleright Brute force approach is $\mathcal{O}(n^2)\text{, which would cause TLE}$
- We can modify the above equation, to be

$$\max_{1 \le i \le k \le j \le n, h_k = \min_{i \le p \le j} h_p} h_k \left(\sum_{i \le p \le j} w_p \right)$$

▶ Note that $w_i > 0 \cdots$

• If
$$i' \leq i$$
, and $j \leq j'$,

$$\sum_{1' \le p \le j'} w_p \ge \sum_{i \le p \le j} w_p$$

 \blacktriangleright So for some k, we should choose i as small as possible, and j as large as possible

i

$$i = rg \min_{\substack{i \le k, \min \ i \le p \le k}} h_p = h_k$$

$$j = \arg \min_{\substack{j \ge k, \min_{k \le p \le j} h_p = h_k}}$$

- We can use monotonic stack to find (i, j) for all values of k, in $\mathcal{O}(n)$
- Then with a prefix sum we can calculate the answer for each instance of k, in $\mathcal{O}(1)$

► Teams passed/tried: 14/15 (44 tries)

► Teams passed/tried: 14/15 (44 tries)

• If the vertices of a polygon is A_1, \cdots, A_n , its area is

$$\left|\sum_{i=0}^{n-1}\overrightarrow{OA_{i}}\times\overrightarrow{OA_{i+1}}\right|$$

Where $A_0 = A_n$

► Teams passed/tried: 14/15 (44 tries)

• If the vertices of a polygon is A_1, \cdots, A_n , its area is

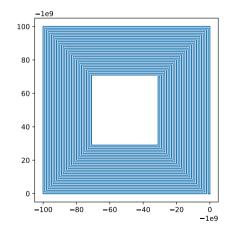
$$\left|\sum_{i=0}^{n-1} \overrightarrow{OA_i} \times \overrightarrow{OA_{i+1}}\right|$$

Where $A_0 = A_n$

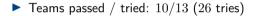
- ▶ Pitfall 1: the precision of double is not enough (sample # 2)
- ▶ Pitfall 2: though the answer won't exceed 4×10^{18} , the intermediate values may be very large (sample #3 & #4)

A "Snake"

The sum will soon exceed $2^{64}\ {\rm with}\ {\rm inputs}\ {\rm like}\ {\rm this}$



- The precision of long double is not enough for intermediate values, so using it will results inaccurate answer
- The intermediate values won't fit in long long, using it will results undefined behavior, but it happens to give correct answer in the case
- One of the correct ways is to use unsigned long long for modulo 2⁶⁴ arithmatics, then cast it to a long long
- Output: "%lld.%s", x / 2, x & 1 ? ".50" : ".00"



- ► Teams passed / tried: 10/13 (26 tries)
- ► There are at most 2 bits flipped
- The value of d(0) should ensure the xor-sum of d(i) for each i is 0
- ▶ If it's true, we know that 0 or 2 bits are flipped
- Then check if the data block is correct, output "good" or "broken"
- ▶ Now consider if the xor-sum of all bits is 1 …

▶ The value of $d(2^k)$ ensures

$$\bigoplus_{x \cap 2^k) \neq 0} d(x) = 0$$

- Assume that the position of filpped bit is x
- If it's true, we know that all bits with positions with its k-th binary bit as 1 are correct, so the position of the flipped bit must have its k-th binary bit as 0
- Likewisely, if it's false, we know the position of the flipped bit must have its k-th binary bit as 1
- ▶ We now have all binary bits of *x*, output it!

► Teams passed / tried: 3/9 (28 tries)

- ► Teams passed / tried: 3/9 (28 tries)
- Use a std::set with a special comparator, to store the segments of unoccupied closestools and find the best one
- Use another std::set with a "normal" comparator, to store the positions of Orz Pandas in the toliet so we can find the segment(s) should be merged in type 2 operations

► Teams passed / tried: 3/5 (9 tries)

- ► Teams passed / tried: 3/5 (9 tries)
- The time of reassignments in the *t*-th operation, g(t), is a *stochastic process*
- We "want" the *time average* of g(t)

$$\lim_{T \to \infty} \frac{f(T)}{T} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{m} g(t)$$

If a stochastic process is *ergodic*, the time average will converge *almost everywhere* to its *ensemble average* or *expectation*

$$P\left\{\lim_{T\to\infty}\frac{f(T)}{T} = \lim_{T\to\infty}E(g(T))\right\} = 1$$

Or

$$\frac{f(T)}{T} \to E(g(T)) \quad (\text{a. e.}, T \to \infty)$$

- > Th. If a Markov process has a unique invariant distribution π , then it is an ergodic process
- Th. A Markov process has a unique invariant distribution *iff*. there is exactly one irreducible closed subset of non-null recurrent states
- ► In the problem:
 - Those states where some internal node has no preferred child are *transient Proof.* Once an internal node gets an preferred child, it can not "orphan" it without getting a new one
 - Those states where each internal node has one preferred child are *non-null recurrent*, and those states belong to one irreducible closed subset

Proof. To get state B from state A, just query each preferred child in B, in reversed order of the *depth* of the child

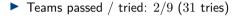
▶ Now we can see the ergodicity, so we just need $E(g(\infty))$

$$E(g(\infty)) = \frac{1}{n} \sum_{u \ v \text{ is on the path from } u \text{ to the root}} E([v_{i+1} \text{ is not the preferred child of } fa(v)])$$

•
$$E([some event]) = P\{some event\}$$

- ▶ $P{v \text{ is not the preferred child of } fa(v)} = 1 \frac{s(v)}{s(fa(v))-1}$
- ▶ fa(u) is the parent of u, and s(u) is the size of the subtree with u as the root

▶ Now $E(g(\infty))$ can be calculated in $\mathcal{O}(n)$ with an interchange of the summations $E(g(\infty)) = \frac{1}{n} \sum_{v} \left(1 - \frac{s(v)}{s(fa(v))}\right) \sum_{u} [v \text{ is an ancester of } u] = \frac{1}{n} \sum_{v} \left(1 - \frac{s(v)}{s(fa(v))}\right) s(v)$



- ► Teams passed / tried: 2/9 (31 tries)
- Consider the problem bitwisely
- ▶ For the *i*-th bit, *exclusive or* is equivalent to *modulo*-2 add
- So we can consider k times of *prefix sum* insteadly

$$(1 + z^1 + z^2 + \cdots)^k = (1 - z)^{-k}$$

$$\left(\frac{\mathsf{d}}{\mathsf{d}z}\right)^t (1-z)^{-k} = k^{\bar{t}}(1-z)^{-k-t}$$
$$(1-z)^{-k} = \sum_{t=0}^\infty \frac{k^{\bar{t}}z^t}{t!} = \sum_{t=0}^\infty \binom{k+t}{t} z^t$$

Convolution

With the coefficients of $(1-z)^{-k}$

$$b_t = \binom{k+t}{t}$$

We can calculate the answer of the $i\!\!-\!\mathrm{th}$ bit as a modulo-2 convolution

1

$$c_t = \left(\sum_{\tau=0}^t b_\tau a_{t-\tau}\right) \bmod 2$$

Use FFT to make the convolution $\mathcal{O}(n\log n)$, the time complexity overall would be $\mathcal{O}(n\log n\log\max a_i)$

 $b_t \mod 2$

 b_t is a binomial coefficient which may be very large. But we only care $b_t \mod 2$. It's either 0 (if b_t is even) or 1 (if b_t is odd). We can see

$$b_t = \frac{(k+t)!}{k!t!}$$

The number of the prime divisor 2 in the factorial m! is

$$f(m) = \sum_{j=1}^{\infty} \left\lfloor \frac{m}{2^j} \right\rfloor$$

It's easy to see

$$\left\lfloor \frac{a}{2^j} \right\rfloor + \left\lfloor \frac{b}{2^j} \right\rfloor \le \left\lfloor \frac{a+b}{2^j} \right\rfloor$$

And the left side equals to the right side $\mathit{iff.}$ for all j > 0

 $(a \bmod 2^j) + (b \bmod 2^j) < 2^j$

We can now see if there is some j > 0 with

$$(k \bmod 2^j) + (t \bmod 2^j) \ge 2^j$$

Then the numerator (k + t)! has more two's in its prime decomposition than the denominator k!t!. It's easy to see this criteria holds *iff*.

$$(k \cap t) = 0$$

So

$$\binom{k+t}{t} \mod 2 = 1$$

iff. $(k \cap t) = 0$ Alternatively you can skip the paper work and calculate f(a), f(b), f(a + b) with brute force, in $O(\log(a + b))$.

► Teams passed / tried: 1/1 (2 tries)

- ► Teams passed / tried: 1/1 (2 tries)
- Consider the node which is on the path and closet to the root
- ▶ Consider the path from $u_1 = v_0$ to $lca_1(u_1, u_2)$, $v_0, v_1, \cdots, v_k, lca_1(u_1, u_2)$, there are

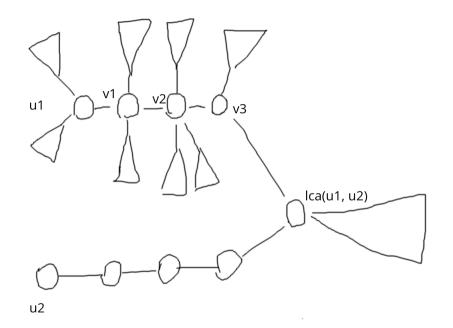
 $s(v_i) - s(v_{i-1})$

nodes which can make $v_i(i > 0)$ closet to it on the path

The contribution to the answer on the path is

$$\sum_{i} (s(v_i) - s(v_{i-1})) \times i(q-i)$$

Where q is the number of edges on the path on u_1 to u_2 , s(v) is the size of the subtree with v as the root, and the root of the entire tree is 1



For v_k , we have

$$k = d(u) - d(v_k)$$

Where d(v) is the depth of node v. So the equation above can be rewrited

$$\sum (s(v_i) - s(v_{i-1}))(d(u) - d(v_i))(q - d(u) + d(v_i))$$

We can split it into $8 \ {\rm sums},$ with only v_i as the parameter. For example

$$-(q-d(u))\sum s(v_i)d(v_i)$$

And

$$-\sum s(v_i) d(fa(v_i))^2$$

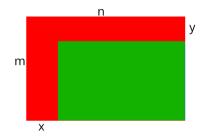
Where fa(v) is the parent of node v, with node 1 as the root.

- Now all the sums splitted have only v_i as the parameter, so we can use heavy-light decomposition to calculate it in O(n log n).
- We can improve it to $\mathcal{O}(n)$, with prefix sum on the tree.
- The contribution of $lca(u_1, u_2)$ is calculated specially.

► Teams passed / tried: 0/1 (3 tries)

- ► Teams passed / tried: 0/1 (3 tries)
- At first note that we can swap a_i and a_j without changing the answer
- \blacktriangleright Likewise for b_i and b_j
- \blacktriangleright So we can sort a and b

▶ After the sorting, generally those lines with minimum *a* or *b* will form a "L"-shape area



- ▶ We can solve the problem for the remaining area *independently*
- Then just multiply the answer of two areas

Using the inclusion-exclusion rule:

$$\sum_{ij} \binom{x}{i} \binom{y}{j} (-1)^{i+j} q^{(mx+ny-xy)-(mi+nj-ij)} (q-1)^{mi+nj-ij}$$

▶ It's $\mathcal{O}(xy)$, we can put all terms depending on j together

$$\sum_{i} \binom{x}{i} (-1)^{i} q^{mx+ny-xy-im} (q-1)^{mi} \sum_{j} \binom{y}{j} (-1)^{j} q^{-j(n-i)} (q-1)^{j(n-i)} (q-1)^{j($$

Note there is an expansion of a binomial

$$\sum_{i} \binom{x}{i} (-1)^{i} q^{mx+ny-xy-im} (q-1)^{mi} \left(1 - \left(\frac{q-1}{q}\right)^{n-i}\right)^{y}$$

Now it's $\mathcal{O}(x \log x)$

► Teams passed/tried: 0/2 (4 tries)

- ► Teams passed/tried: 0/2 (4 tries)
- ► For length *n*, the number of different bracelets is

$$f(n) = n^{-1} \sum_{d|n} \phi(d) g(n/d)$$

Where g(x) = fib(x) + fib(x-2) + 2[x is even]

Total Prize

► The answer is

$$\sum_{n=1}^{m} \sum_{d|n} \phi(d) g(n/d)$$

Interchange the order of summation

$$\sum_{d=1}^{m} \phi(d) \sum_{i=1}^{\lfloor m/d \rfloor} g(i)$$

▶ $\lfloor m/d \rfloor$ has only $\mathcal{O}(\sqrt{m})$ different values

The answer is

$$\sum_{n=1}^{m} \sum_{d|n} \phi(d) g(n/d)$$

Interchange the order of summation

$$\sum_{d=1}^{m} \phi(d) \sum_{i=1}^{\lfloor m/d \rfloor} g(i)$$

•
$$\lfloor m/d \rfloor$$
 has only $\mathcal{O}(\sqrt{m})$ different values

- ▶ If we can caluclate the prefix sum of ϕ and g quickly (in time T), we can solve the problem in $O(\sqrt{m}) \times T$
- For ϕ , we have apiadu's sieve

For g, we have
$$fib(x+2) - 1 = \sum_{x=1}^{n} fib(x)$$

Time complexity

▶ $O(m^{7/6})$?

▶ Note that in the implementation of apiadu's sieve, once we calculated $s(n) = \sum_{i=1}^{n} \phi(i)$, the values of $s(\lfloor n/d \rfloor)$ are already stored into the hashtable

▶ So the time complexity is only $\mathcal{O}(m^{2/3} + m^{1/2}\log m)$

► Teams passed / tried: 0/1 (1 tries)

- ► Teams passed / tried: 0/1 (1 tries)
- It's easy to find one possible solution (if there is any)
- For any loop containing edges e_1, e_2, \dots, e_k , assume we add a very small loop current δ on the loop, the cost will change

$$\sum_{i} \left(\frac{\mathsf{d}}{\mathsf{d} f_i} (c_i f_i^2) \right) \delta$$

> To make the cost won't increase for any positive of negative δ , we must have

$$2\sum_{i} f_i c_i = 0$$

 \blacktriangleright This is a linear equation of f_i , if we can find enough equations we can solve f_i

- For each *independent* loops, we can find one equation
- For each *non-tree* edge, we can find one independant loop. There are |E| |V| + 1 loops
- \blacktriangleright For each vertex v (except the super source vertex), we can find one *conservation* equation

$$w_v = \sum_{e \in \text{edge connecting } v} f_e$$

There are |V| - 1 conservation equations

- ▶ Now we have |E| independent linear equations, so we can solve f_i with Gauss elimination
- ▶ Note that our equations are exactly Kirchhoff voltage and current equation
- You may have to handle the special case where $c_i = 0$

Part II Awards

- ► Fastest to Solve A: rand
- Fastest to Solve I: the path to ac
- Fastest to Solve C: Symplectic Geometric Rhythm
- Fastest to Solve E: Symplectic Geometric Rhythm
- Fastest to Solve D: the path to ac
- Fastest to Solve H: Nothing Gold Can Stay
- ► Fastest to Solve G: Symplectic Geometric Rhythm

Bronze Medals

- ► HTT: 2/202
- ▶ Triy: 3/504
- EasyMath: 3/496
- ► TakeYourTime: 3/481

- ▶ TriWater: 3/433
- ▶ Meow: 3/374
- ▶ Three binary trees: 3/364
- Nothing Gold Can Stay: 3/249

the path to ac: 4/506

- ► Fan Zhang
- Zhibin Mai
- Dongchen Chai

Celeste: 4/466

- Quyang Pan
- Linqi Zhu
- ► Haozhao Liu

rand: 5/658

- Mengxi Wang
- Shidong Li
- Pengfei Shi

Symplectic Geometric Rhythm: 7/752

- Chang Feng
- Zhongsheng Zhan
- Can Zhou

GL & HF!

